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Novel publications proposing algorithms aimed at optimising the gradient descent of ma-
chine learning models often claim state-of-the-art performance when compared against
older baseline algorithms such as Stochastic Gradient Descent and Adam, omitting a
comparison against newer proposals. This project looked at exploring a wide range
of such optimisation algorithms to compare them against each other, looking specifi-
cally at the early stages of training such as the first 40 epochs in the case of an image
classification model. It was discovered that best performing algorithms appeared to
generalise well across different network architectures and machine learning tasks with
the KFAC and Ranger algorithms performing the best, obtaining an improvement of
at least 4% accuracy over the baselines across different network architectures with even
more significant improvements in the test perplexity of a language model. Beyond the
generalisation ability of the model, well performing algorithms appeared to reach rel-
atively flat regions of the loss surface with the largest Hessian eigenvalues reaching
magnitudes of around 100, meanwhile lower test performance was indicated by large
outlying eigenvalues of over 2000. Within the region of around 100 there seemed to
be little correlation between surface sharpness and model performance, suggesting that
there exists a threshold within which sharpness of the loss surface proves to have little
influence over the model’s generalisation.
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1 INTRODUCTION

1 Introduction
The past two decades have seen Machine Learning (ML) rise to the forefront of research
in computer science and other fields such as medicine and finance. During this time, we
have witnessed a revolution, owing largely to the advancements in hardware which have
facilitated ever larger and more complex algorithms resulting in new ’state-of-the-art’
models on a near year-by-year basis.

As new horizons are explored, human ambitions are likely to flare, with a desire
to tackle and solve ever more difficult problems. This natural progression is well illus-
trated by the comparison of two different image classification datasets proposed roughly
10 years apart. In the 10 years, this pattern of continuous improvement has seen ML
models go from attempting to classify grey-scale images of single digits [1] with 60,000
examples, to classifying full colour images to any of the 1000 classes with over 14 million
examples in the ImageNet dataset [2]. With increased automation in the modern world,
the datasets used in ML are certain to continue growing in size.

ML tasks utilise a model which by itself is a blank book, requiring a period of learning
to tackle the task at hand. The increase in the complexity of ML tasks has required the
development of ever more complex models, to a point where new tasks have outpaced
advances in hardware leading to ever longer training times, with some requiring months
of training. This itself has resulted in a paradigm shift within ML, turning towards
parallel computation to reduce such immoderate time requirements. One major change
has seen neural networks trained on graphical processor units (GPUs), which possess
a greater number of cores allowing for faster parallel computation, proving excellent at
accelerating matrix and tensor operations. This has been taken even further, with the
use of computing clusters looking to utilise numerous machines, themselves possessing
numerous GPUs, to allow for the effective training of large models. However, such clus-
ters are typically very costly and hence prohibitive to many. As a result, researchers
have begun to increasingly turn towards optimisation methods in an attempt to reduce
training times with limited computing resources.

Many of the algorithms used for training ML models had their foundations formu-
lated in the last century, with methods such as Stochastic Gradient Descent [3] dating
back to 1951. Gradient-based algorithms are the leading methods which, as their name
suggests, look to utilise gradient information during the training process. The recent
drive for optimisation has seen these algorithms modified using methods from the field
of Numerical Optimisation, with further work going into producing efficient implemen-
tations.

This project concerns itself with exploring numerous optimisation algorithms. In gen-
eral, new publications in the field claim ’state-of-the-art’ performance when comparing
themselves against the established baselines and often omit a comparison against similar
newly proposed methods. This allows an opportunity for a work to look more closely
at these newer algorithms, endeavouring to compare them against each other and put
their performance in a better perspective.

Some of the key goals of the paper can be summarised as,

• Provide a comprehensive comparison, both theoretical and empirical, across newly
proposed optimisation algorithms and older baselines.

• Investigate various features of the optimisation process, such as the loss landscape,
during the training of various ML models.

• Focus largely on the initial and most crucial stages of training during the first 40
epochs from initialisation, providing a unique insight into the behaviour of training
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algorithms, unlike many studies which look towards the fully trained model.

The project concluded that while most algorithms perform well against the baseline,
there exist significant variability across the different methods, with the KFAC algorithm
which uses natural gradient information proving superior in both test performance and
hyperparameter robustness compared to others. Furthermore, some of the algorithms
were discovered to possess computational overhead not made apparent by their theoret-
ical analysis, owing largely due to the implementation of modern ML frameworks which
consequently should be considered more closely in novel publications.

2 Background

2.1 The Machine Learning Problem
The ultimate aim of any ML model is good performance on previously unseen data, also
referred to as generalisation. Training a ML model requires a dataset which is parti-
tioned into a training and testing set, with a further evaluation set sometimes used. The
model then attempts to learn the underlying distribution of the data by only looking
at samples from the training set. This training process is formulated as a minimisation
problem, with the objective being the loss function L which measures how wrong the
model is in its current predictions. The training and test distributions, while sampled
from the same underlying data distribution, are not identical but rather see slight shifts
in distribution space, giving rise to interesting phenomena described in optimisation
literature, such as the generalisation gap between sharp and flat minima [4, 5], along
with the more widely known phenomenon of overfitting [6].

Defining this more formally as a supervised learning problem, the ML model produces
a predictor function f : X → Y , with internal parameters θ, which attempts to learn a
mapping from the input space X ∈ Rn×d, to the output space Y ∈ Rn according to the
distribution of a dataset consisting of n data-target pairs {x, y} . Such predictor func-
tions are task and model dependent, they generally range from simple linear functions
used in regression models (1) to more complex, non-linear functions as seen in neural
networks.

f(θ, x) = θTx (1)

Data is typically handled in terms of multi-dimensional matrices known as tensors, which
in the case of the dataset mentioned above are defined as x ∈ Rn×d and y ∈ Rn, with
n being the number of data samples within the dataset and d being the implicit dimen-
sionality of individual data points.

The training process amounts to minimising the Expected Risk (2), however, at the
time of training the model does not know the underlying data distribution and has no
access to dP . Instead, the model looks to minimise an approximation of the expected
risk known as the Empirical Risk (3) which equals the expected risk in expectation
[50, 51].

R(θ) =

∫
L(f(θ, x), y) dP (2)

Remp(θ) =
1

n

n∑
i=1

L(f(θ, xi), yi) (3)

In computing the Empirical Risk, the model uses the loss function L : Rm × Rm → R
to measure how wrong its current prediction for a set of inputs ŷ is, when compared to
the true value y. Like the predictor function, the loss function is task dependent, with
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Cross Entropy Loss (4) and Mean Squared Error (5) commonly used in classification
and regression tasks respectively.

L(ŷ, y) =

d∑
i=1

yi log(ŷi) (4)

L(ŷ, y) =

n∑
i=1

(yi − ŷi)2 (5)

2.2 The Minimisation Problem
In almost all cases, the task of minimising the empirical risk is done iteratively, as
analytic solutions prove intractable for larger problems. Today, virtually all ML models
use gradient-based optimisation methods for training, with many variants of the gradient
descent (GD) algorithm. GD proceeds by making iterative updates to the model’s
parameters according to the gradient of the loss function w.r.t these parameters ∇θL.
The updates proceed along the direction opposite to the gradient of the loss function at
each point, taking a path down the curvature of the loss surface towards the minimum,
with the size of each step controlled by the parameter α.

θt+1 = θt − α∇θL(f(θt, x), y) (6)

This type of GD is often referred to as Full-Batch GD, as at each iteration it utilises the
entire dataset in computing the gradient. Such full-batch methods scale with the size
of the dataset O(n) and prove impractical for larger problems. With modern datasets
often growing to millions of data samples, this algorithm would prove of little use in ML
today.

As a result of this most models use the Stochastic Gradient Descent (SGD) [3], which
at each iteration computes the gradient of the loss function w.r.t a single datapoint,
sampled stochastically from the dataset (7) where the complexity of each iteration is
now constant O(1), in the size of the dataset. Each iteration of SGD is now a stochastic
process, meaning that the computed gradient equals the true gradient only in expectation
(8). Any individual update may take steps which at times diverge from the optimal
descent path, introducing variance into the gradient estimation.

θt+1 = θt − α∇θL(f(θt, xi), yi) (7)

∇θL(f(θt, x), y) = E
[
∇θL(f(θt, xi), yi)

]
(8)

The introduction of variance proves detrimental for the algorithm’s rate of convergence,
in fact SGD possesses a sub-linear rate of convergence, compared to the full-batch
method’s linear rate. This rate can be improved through a compromise between the
two methods, involving a mini-batch of data at each iteration. The size of this mini-
batch is typically much smaller than the size of the dataset, with the convention being
a power of 2 as this facilitates better hardware utilisation [7]. Mini-batching is able to
reduce variance while maintaining a scalable algorithm, applicable to large datasets.

2.3 The Convergence Problem
During training, the optimisation algorithm produces a convergent series with the loss
value at iteration t given by Lt and an optimum L∗. There exist three fundamental
classes of convergence rates [8] which are considered in optimisation literature, these are
visualised in figure 1.
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Figure 1: The different rates of convergence.

• Sublinear Convergence A sequence of loss values is said to converge at a sub-
linear rate if the following limit holds.

lim
t→∞

|Lt+1 − L∗|
|Lt − L∗|

= 1

This is the slowest rate of the three classes considered here, it is also the rate
achieved by single-sample SGD. In general, most acceleration algorithms aim to
improve the algorithm’s convergence beyond this rate.

• Linear Convergence A sequence of loss values is said to converge at a linear
rate if the following limit holds.

lim
t→∞

|Lt+1 − L∗|
|Lt − L∗|

= α , α ∈ (0, 1)

Note that (0, 1) is an open interval. This is the rate achieved by full-batch GD,
with most acceleration algorithms aiming to achieve this rate of convergence.

• Superlinear Convergence A sequence of loss values is said to converge at a
superlinear rate if the following limit holds.

lim
t→∞

|Lt+1 − L∗|
|Lt − L∗|

= 0

This is the rate achieved by some second order algorithms on quadratic objective
functions. Beyond this, it is a rate achieved only in theory as most algorithm use
some form of approximation, slowing down convergence.

Convergence rates alone should not be used as a metric on which to evaluate optimisation
algorithms, as they overlook factors such as the complexity of each iteration and the
performance of the final model. Instead, they can be used as an indicator of performance
to be used in conjunction with further analysis.

2.4 The Case for Convexity
The principle of convexity is essential in establishing the convergence proofs of GD
algorithms. This section will begin to present some more involved proofs which may be
too lengthy to include in the main body of the paper, in which case the reader will be
directed towards the appendix or other relevant literature.
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2.4.1 Convex Sets

In describing convexity, it is best to begin with the case of the convex set which con-
tains the data used by the function. A convex set is defined to be a subset C of the
corresponding vector space wherein every line segment connecting any two points in the
set is itself contained within the set. More formally, a set C ∈ Rn is defined as convex
if (9) holds.

∀x, y ∈ C : αx+ (1− α)y ∈ C, ∀α ∈ [0, 1] (9)

Furthermore, strict convexity is achieved when all points except the end points are
contained within the set, this corresponds to the interval on the RHS of (9) being open,
[0, 1]→ (0, 1).

2.4.2 Convex Functions

The concept behind convexity in functions is similar to that of convex sets. A convex
function has every line segment connecting any of its two points lie entirely on or above
the function line. Formally, given a convex set C ∈ R, a function f : C → R is said to
be convex if (10) holds [9].

∀x, y ∈ C : f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y), ∀α ∈ [0, 1] (10)

Similarly to a convex set, strictly convex functions have all line segments lie entirely
above the function line, this amounts to swapping the inequality in (10) for a strict
inequality.

Applying GD algorithms assumes the objective function to be differentiable, this al-
lows for additional convexity conditions to be derived from (10) (see appendix A for a
full derivation). Given that f is differentiable, (10) can be expanded to provide a first-
and second-order condition of convexity (11), (12).

∀x, y ∈ C : f(y) ≥ f(x) +∇f(x)T (y − x) (11)

∀x ∈ C : ∇2f(x) ≥ 0 (12)

The RHS of the first-order condition (11) is equivalent to a first-order Taylor expansion
at x, which provides a global under estimator for the function. This gives rise to one
of the key tenets of convexity, local gradient information can provide global
function information. A local optimality condition ∇f(x) = 0 can be extended
to entail global optimality of a convex function. For a convex function f , given the local
optimality and the first-order condition (11), it must be the case that,

∀y ∈ C : f(y) ≥ f(x)

This means that any locally optimal point is also the global optimum. This feature
is dependent upon the conditions of convexity and hence breaks down for non-convex
functions.

The aforementioned conditions make the optimisation of convex functions far simpler
and consequently faster than for non-convex functions, as the optimisation algorithm
must only find the point at which the gradient is 0. In general however, the convex
conditions (11), (12) only hold for simple ML models which use linear discriminant
functions, these include Linear and Logistic Regression models. However, most com-
plex ML models utilise non-linearities which break the global convexity conditions, one
class of models which do this are neural networks whose loss surface proves to be highly
non-convex.
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2.4.3 Lipschitz Continuity

A further assumption widely utilised in the theoretical analysis of GD is that of Lips-
chitz Continuity, which is stated formally below.

A differentiable function f : Ra → Rb is defined to be Lipschitz Continuous at a
point x ∈ Ra if there exists a constant L such that the following holds

∀ y ∈ Ra : ||∇f(y)−∇f(x)|| ≤ L||y − x||

Usually utilised alongside convexity, this assumption ensures that the function vector
does not rapidly change with the parameters, ensuring a ’smooth’ gradient. Sometimes
this condition is also referred to as ’L-Smoothness’.

2.5 Non-Convex Analysis
With essentially all state-of-the-art models consisting at least in some part of deep neural
networks, any optimisation algorithm which aims to accelerate the procession of gradient
descent must perform well in non-convex environments. While convex analysis of GD
algorithms is covered extensively in optimisation literature, the non-convex case has
seen much less attention and there remains a gap in our understanding which separates
the theoretical convergence of GD and its remarkable performance in training neural
networks.

The non-convex case is markedly more difficult for GD algorithms. Unlike the convex
case which simply involved searching for the region where |∇L| = 0 indicating the global
minimum, non-convexity introduces two further critical points which can entrap GD
algorithms hindering convergence.

2.5.1 Local Minima

The first of these are local minima. These consist of points where |∇L| = 0, surrounded
by positive curvature. In most functions, local minima exist at higher function values
than the global, however the validity of this in the case of neural networks remains a
topic of great contention within the ML community, with arguments suggesting that
such local minima within NNs are not bad [10, 11, 12] and hence do not hinder the
performance of the trained model. However, such analysis often requires simplifying
assumptions and conditions which apply only to certain ML problems, furthermore [13]
was able to create bad minima within networks using synthetic datasets, dispelling the
idea that such minima cannot exist. Regardless of the optimality of local minima, certain
GD algorithms remain capable of generalising well across various deep networks, with
no clear correlation to the optimality of local minima. Instead, there exist other factors
which have been shown to exert greater influence over the generalisation performance
of the model.

2.5.2 Saddle Points

Perhaps more detrimental to training is the presence of saddle points. These are points
where the maximum of one dimension coincides with the minimum of another, hence
resulting in a flat-like region of low gradient. In high-dimensional parameter spaces,
saddle points can be identified using the Hessian matrix of second-order derivatives,
H ∈ Rd×d with d corresponding to the dimensionality of the parameter space. An indef-
inite Hessian, containing both positive and negative eigenvalues indicates both positive
and negative curvature as is seen at a saddle point. In large networks with d > 108, it
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Figure 2: The convergence of different GD algorithms, passing through a 2D saddle
point.

is increasingly less likely that a Hessian will be composed of entirely positive or nega-
tive eigenvalues, resulting in the proliferation of saddle points inside high-dimensional
parameter spaces. Saddle points directly affect the descent path of individual GD algo-
rithms, with different algorithms diverging at these points [14, 15] and leading to widely
different final minima. This can be seen in figure 2, where each of algorithm takes a
different path. This effect is further amplified for high-dimensional saddle points, more
prevalent inside deep neural networks.

2.6 Convergence of Gradient Descent
With a brief introduction to the principles of convexity, it is now possible to theoretically
derive the convergence proof for GD.

Let us consider a differentiable objective function f : Rd → R which is also convex
and satisfies the Lipschitz Continuity condition with a Lipschitz constant L. Taking the
quadratic expansion of the function at y to be,

f(y) = f(x) + f(x)T (y − x) + 1

2
H||y − x||2

However, considering only first-order GD, the expression has no access to the Hessian
H and instead replace the H by an approximation 1

t I, where I is an identity matrix and
t is the step size used in the algorithm. Furthermore, take f(y) to be the next step in
the GD algorithm which must be less than or equal to the current step value, allowing
for the inclusion of the inequality below.

f(y) ≤ f(x) + f(x)T (y − x) + 1

2t
||y − x||2 (13)

Set y = x+ = x− t∇f(x) to be the next iterate in the series, after rearranging this can
be substituted into (13), obtaining (14) below.

f(x+) ≤ f(x)− t

2
||∇f(x)||2 (14)

Next, the f(x) in (14) can be substituted for the first-order convexity condition (11)
around the optimal point f(x∗), which when rearranged allows for its substitution into
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(14) as
f(x) ≤ f(x∗) +∇f(x)T (x− x∗)

consequently giving the following expression,

f(x+) ≤ f(x∗) +∇f(x)T (x− x∗)− t

2
||∇f(x)||2

This can be expanded further by substituting the value of each gradient ∇f(x) for the
parameter values according to the GD update rule.

f(x+) ≤ f(x∗) +
1

2t
(||x− x∗||2 − ||x+ − x∗||2) (15)

Taking x = x0 to be the initial iteration and x+ = xk to be any later iteration after k
steps, both sides are summed over k iterations and f(x∗) is moved to the LHS.

k∑
i=1

(f(xi)− f(x∗)) ≤ 1

2t
(||x0 − x∗||2 − ||xk − x∗||2)

≤ 1

2t
||x0 − x∗||2

Finally, note that any f(xk) after k iterations is non-decreasing hence the final expression
may be written as (16).

f(xk)− f(x∗) ≤
1

k

k∑
i=1

(
f(xi)− f(x∗)

)
≤ 1

2tk
||x0 − x∗||2 (16)

And so finally, from (16) the linear convergence rate observed for GD is obtained, O( 1k )
with k being the number of iterations. �

2.7 Convergence of Stochastic Gradient Descent
The theoretical convergence of GD omits the computational overhead involved in the
gradient computation at each iteration, proving impractical for large datasets. SGD
proposes a solution to this by computing the gradient w.r.t individual data points, sam-
pled stochastically from the dataset.

As with GD consider a convex, differentiable, and L-Lipschitz function f : Rd → R,
again taking its second-order Taylor expansion with step size t.

f(y) ≤ f(x) + f(x)T (y − x) + 1

2t
||y − x||2

As the gradient at each step is now computed w.r.t to individual data points, it equals the
true gradient only in expectation and results in the introduction of unwanted variance.
As before, taking y = x+ = x−tg to be the next set of parameters in the series, with step
size t and g denoting the stochastic gradient estimation at each step. In considering the
convergence of these steps, g has a bounded variance V ar[g] ≤ σ2. The above expression
can be rearranged to give,

f(x+) ≤ f(x)− tf(x)T g + t

2
||g||2

The stochastic estimation g equals the true gradient in expectation, ∇f(x) = E[g].
Taking the expectation w.r.t g on both side of the above expression yields the following,

12



2 BACKGROUND

where the terms on the far RHS follow from rearranging the expression for the variance
of g (17).

V ar[g] = E
[
||g||2

]
− ||E[g]||2 (17)

E
[
f(x+)

]
≤ f(x)− t||f(x)||2 + t

2

(
||∇f(x)||2 + V ar[g]

)
Rearranging this and substituting the expression for the bounded variance,

E
[
f(x+)

]
≤ f(x)− t(1− 1

2
)||f(x)||2 + t

2
V ar[g]

≤ f(x)− 1

2
||f(x)||2 + t

2
σ2 (18)

As was done with the convergence of GD, take the first-order convexity condition (11)
and rearrange it for the optimum point x∗ and another iterate x, this time including the
estimated gradient g.

f(x) ≤ f(x∗) + E
[
gT
]
(x− x∗)

This is then substituted for f(x) in (18), with (17) again rearranged.

E
[
f(x+)

]
≤ f(x∗) + E

[
gT
]
(x− x∗)− 1

2
||∇f(x)||2 + t

2
σ2

≤ f(x∗) + E
[
gT
]
(x− x∗)− 1

2
E
[
||g||2

]
+
t

2
σ2

≤ f(x∗) + E
[
gT (x− x∗)− 1

2
||g||2

]
+
t

2
σ2

Rearranging and substituting the gradient update rule as in GD.

f(x+) ≤ f(x∗) +
1

2t

(
||x− x∗||2 − ||x+ − x∗||2

)
+
tσ2

2

The remainder of the proof follows much like the GD case above. Consider x = x0 to
be the initial iteration while x+ = xk is taken to be any iteration after k steps. Moving
f(x∗) to the left and summing both sides over k gives.

k∑
i=1

(
E
[
f(xi)

]
− f(x∗)

)
≤ 1

2t
E
[
||x0 − x∗||2 − ||xi − x∗||2

]
+
ktσ2

2

≤ 1

2t
E
[
||x0 − x∗||2

]
+
ktσ2

2

≤ 1

2t
||x0 − x∗||2 +

ktσ2

2

Noting that f(xk) is non-decreasing after k iterations, the expression can be rewritten
into its final form.

E
[
f(xk)

]
− f(x∗) ≤ 1

k

k∑
i=1

(
E
[
f(xi)

]
− f(x∗)

)
≤ 1

2tk
||x0 − x∗||2 +

tσ2

2
(19)

Unlike GD, even after a large number of iterations k, SGD only converges towards a
region around the minimum, bounded by the step size t. �
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3 MACHINE LEARNING MODELS

Figure 3: Illustration of how training loss generalises to test loss for different types of
minima. In general, wider minima result in a smaller increase in loss moving to the test
distribution.

3 Machine Learning Models
In evaluating optimisation algorithms used in ML, it is important to also consider what
models these are applied to.

3.1 Neural Networks
Neural networks have established themselves as the firm leaders in the field of ML, with
state-of-the-art models right across different sub-fields consisting entirely of various neu-
ral network architectures. As a result, any modern optimisation algorithm must perform
well in the non-convex setting of a neural network loss function. The layered structure
of neural networks sees the use of the backpropagation algorithm [47] to obtain the
derivative of each network layer w.r.t the parameters, this is then used in the iterative
updates of GD algorithms.

State-of-the-art deep NNs are non-convex, stemming from the repeated use of non-
linear activation functions across different layers [45]. This is a necessity in NNs, as it
allows for the effective modelling of more complex problems, unfortunately it results in
a highly non-convex loss function which can prove difficult to optimise. In fact, finding
the global minimum of non-convex functions is NP-Hard [46]. Furthermore, NNs with
any significant depth are overparametrized, with the number of parameters exceeding
dimensionality of the dataset, in most ML problems this would result in significant over-
fitting during training.

Remarkably, with all these red flags, neural networks can achieve state-of-the-art per-
formance across all of machine learning where in most cases, SGD proves sufficient
for effective training. The high dimensionality of the parameter spaces inside neural
networks has meant that an inside view of their loss landscape remains shrouded in
mystery, even with novel visualisation methods these typically offer limited insights.
The surprising effectivity of NNs remains an open research topic.

3.1.1 Optimality of Flatness

One of the primary paradigms in optimisation literature considers the shape of the
minima towards which algorithms converge and the effect that this has on the general-
isation performance of the model. Both the training and test datasets can be thought
of as sampled from the underlying data distribution, their distributions are similar but
not identical and one may be shifted from the other. In the case of a sharp minimum,
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3 MACHINE LEARNING MODELS

Model Architecture No. of Parameters
EfficientNet(B2) [17] 9.2M

ResNet(18) [18] 11.7M
InceptionV3 [19, 20] 27.2M

VGG(11) [21] 132.9M
RoBERTa [43] 80.4M

Figure 4: Neural Network architectures.

even slight displacement can result in a significant increase in loss, meanwhile a flatter
minimum will generally have a smaller increase and a similar training-test loss. This
principle is well illustrated in figure 3.

Intuition would suggest that sharp minima generalise poorly when compared to wider,
flat minima. This is also what is suggested in several publication [4, 5], however one
should be careful with formulating such intuitions as while this is the case in low-
dimensional spaces such as the 2-D plot in figure 3 the effect of sharpness along indi-
vidual dimensions within a parameter space consisting of millions of dimensions could
prove to have less influence. Consequently, there have been several suggestions which
question this concept [53, 54], and it remains a much debated research topic within the
field of machine learning.

3.2 Computer Vision
Computer vision has long been a staple within the ML community, providing a task with
real world application which is sufficiently difficult to allow for the effective evaluation
of models and optimisation algorithms alike.

3.2.1 Image Classification

One of the oldest computer vision problems involves making a classification based on an
input image, with the number of classes dependant on the dataset. The dataset used
for evaluation is the CIFAR 100 [16] dataset, widely used to benchmark ML models it
provides a sufficiently complex task for the optimisation algorithm, with 100 different
classes and 60,000 images which are used to make the classification. The network archi-
tectures chosen for this study are shown in figure 4. These were selected to display the
different design paradigms seen in ML today, from the slightly older and larger archi-
tectures such as VGG to the newer networks like EfficientNet which seek computational
efficiency without sacrificing performance.

3.3 Natural Language Processing
Another field which has benefited greatly from the widespread application of neural net-
works is Natural Language Processing (NLP). Similarly to computer vision, NLP has
gone through a revolution in the past decade with new network architectures [59] coming
to dominate the field. Today, the paradigm commonly seen in NLP involves a two-step
training procedure with the model first pre-trained on a language modelling task using
a large body of text in the language of choice, followed by fine-tuning the model on
specific downstream tasks such as Sentence Classification or Question Answering. In
its evaluation, this paper focuses on the pre-training step, responsible for learning the
structure of the language it influences the downstream performance of any fine-tuning
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task.

The evaluation involves the WikiText-103 dataset [23], composed of 28,000 Wikipedia
articles it sports over 100 million tokens inside its training set. The model of choice was
selected to be RoBERTa [43], with 80 million parameters it is a smaller variant of the
BERT [44] model which trains through masked language modelling, where the model
attempts to correctly predict randomly masked words within a batch of text.

4 Optimisation Algorithms
There exist numerous variants of the GD algorithm, each aiming to optimise the training
procedure of ML models. To illustrate the behaviour of these algorithms in different
environments, this section looks at their convergence plots on various test functions.
These are used to illustrate how the algorithms explore surface features and alone are
not indicative of good performance as they equate to a simple 2-D optimisation problem
with a single perfect data point. Nonetheless, some of the patterns seen in these translate
into real ML problems. These tests are performed using the Beale (20) and Schubert (21)
functions, whose initialisation points were carefully selected to investigate the variance
handling capabilities of different algorithms.

f(x, y) = (1.5− x+ xy)2 + (2.25− x+ xy2)2 + (2.625− x+ xy3)2 (20)

f(x, y) =
( 5∑
j=1

cos
(
(j + 1)x+ j

))( 5∑
j=1

cos
(
(j + 1)y + j

))
(21)

4.1 Stochastic Gradient Descent
SGD proceeds to update the model parameters according to the derivative computed
w.r.t to a stochastically sampled batch of data, {xi, yi}.

θt+1 = θt − α∇θL(θ, xi)

The reduced complexity of SGD when compared to its full-batch counterpart does not
come free of burdens, as the stochastic sampling of data points means that the gradient
computed at each iteration is an approximation of the true gradient and equates to it
only in expectation. Furthermore, this gradient estimation now sees the introduction of
variance (22) which can at times hinder the convergence of the algorithm.

V
[
∇θL(θ, xnb)

]
= E

[
||∇θL(θ, xnb)||2

]
− ||E

[
∇θL(θ, xnb)

]
||2 (22)

The variance sees the convergence rate of SGD reduce from the linear rate of full-batch
GD to a sublinear rate. This however is not as detrimental as it may seem, as the
reduction in complexity results in faster computation, allowing for more iterations to be
computed to account for this reduced rate. The main drawback of SGD is that it does
not actually converge towards the optimum θ∗, instead it converges towards a geometric
ball centred on θ∗ within the d-dimensional parameter space θ̂ ∈ Rd.

Bθ(θ
∗) =

{
x ∈ θ̂ : d(θ∗, x) < r

}
(23)

This principle was illustrated in section 2.7, with the size of the ball (23) proportional to
the step size r ∝ t (19). This comes as a consequence of the stochastic noise within each
SGD estimate, requiring a diminishing step size for convergence towards a fixed point,
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4 OPTIMISATION ALGORITHMS

(a) SGD

(b) Adam

(c) RAdam

(d) AMSGrad

Figure 5: Algorithm convergence plots on the Beale and Schubert test functions, trained
with 4 different learning rates for 100 iterations. The learning rates illustrate the range
of values which allowed for convergence, with values beyond those shown proving detri-
mental to the algorithm.
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Figure 6: Training loss and test performance of a shallow convolutional neural network
on the CIFAR10 dataset, comparing the performance when trained using data sampled
with and without replacement.

as otherwise the algorithm continues to oscillate within (23). While this may suggest
that SGD is a poor choice, empirical results have shown that it can obtain good gener-
alisation performance on deep learning models even when using constant learning rates.
This may indicate that convergence towards a region of low loss around the optimum is
a sufficient goal for optimisation algorithms.

Figure 5 presents a series of plots displaying the descent path of various GD algorithms
on the two test functions mentioned above. Each algorithm was evaluated at four dif-
ferent learning rates which displayed convergence, with rates above those shown leading
to erratic divergence. From figure 5a it can be seen that SGD does well to navigate
smoother landscapes such as that of the Beale function, with higher rates converging
towards the optimum while smaller rates easily stall without a sufficient number of it-
erations. Furthermore, the utility of the variance within the gradient can be seen, as
the large learning rates which may erroneously converge towards a local minimum can
dislodge themselves ultimately converging towards the optimum. The steeper Schubert
function illustrates that even with the inherent noise, SGD can still become trapped as
all learning rates converge towards a local minimum beside the starting point.

One key question behind the implementation of SGD-like algorithms asks if the data is
sampled with or without replacement. In almost all cases, stochastic algorithms sample
data without replacement as this ensures that each epoch sees an entire pass over the
dataset allowing the model to best fit the underlying data distribution. This effect can
be seen in figure 6, with a clear improvement in the test accuracy of the model sampling
without replacement. All algorithms utilising stochastic sampling in this paper do so
without replacement.

4.2 Adaptive Learning Rate Methods
Adaptive learning rate algorithms seek to use additional gradient information to provide
a per-parameter learning rate for each gradient update. They leverage information from
previous steps in an attempt to reduce the variance inherent in stochastic systems.
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4.2.1 Adam

Another baseline widely used in optimisation literate is Adam [24]. Proposed in 2014,
it has been utilised repeatedly in training state-of-the-art models across different fields.
Adam seeks to modify the gradient update of each parameter by scaling it, which results
in a unique learning rate for each parameter in the model. The algorithm does this by
utilising an exponentially decaying average of the gradient and squared gradient at each
step. These estimate the first momentmθ (mean) and the second moment vθ (uncentered
variance) respectively. The decay rates are controlled through hyperparameters β1, β2 ∈
[0, 1).

mt+1
θ = β1m

t
θ + (1− β1)∇θL(θt, xi)

vt+1
θ = β2v

t
θ + (1− β2)(∇θL(θt, xi))2

To avoid bias, which is most prevalent in the initial iterations, at each step the algorithm
recomputes an unbiased estimate of the parameters.

m̂θ =
mt
θ

1− βt1

v̂θ =
vtθ

1− βt2
The final gradient update is then given by (24), with the inclusion of a small constant
ε << 1 to avoid numerical explosions.

θt+1 = θt − α
m̂θ√
v̂θ − ε

(24)

The algorithm looks to accommodate variance fluctuations within each parameter, re-
ducing the update contributions from parameters which suffer from excessive variance
caused by the stochastic sampling of the algorithm.

The behaviour of Adam differs quite significantly from SGD. From the plots in figure
5b it can be seen that Adam takes a more circuitous route to convergence. This proves
detrimental for the Beale function where all but the largest rates appear to favour the
local minimum. The larger rates appear to rebound from the local minimum, ultimately
converging towards the global minimum of the function. In steeper landscapes, Adam
favours smaller step sizes, where even the larger steps appear unable to escape from deep
minima upon entrapment, while the smaller rates prove capable of better navigating the
upper slopes of the function surface finding the correct descent path towards the optimal
point.

Adam and SGD are widely considered the baseline algorithms in ML. To explore be-
yond these, this section now looks at some of the more recent proposals in the field. Most
newer algorithms work from the base Adam optimiser, providing slight modifications in
an attempt to improve its performance with modern architectures and models.

4.2.2 RAdam

As Adam utilises past gradient information, the initial iterations of the algorithm can be
quite unstable while the algorithm gathers past information, resulting in high variance.
RAdam [25] aims to fix this by modifying the update rules of Adam to rectify the high
variance observed in the initial gradient updates.
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First, during initialisation it computes the maximum allowable second moment length
ρ∞ which it uses to gauge if the model is experiencing a period of high variance.

ρ∞ =
2

(1− β2)
− 1

In the cases where the variance is small and does not exceed ρ∞, the algorithm proceeds
to update the parameters using the un-adapted momentum with mθ from the definition
of Adam.

θt+1 = θt − αm̂θ
t

When the variance exceeds the limit set by ρinf , the algorithm computes a gradient
rectification term which it includes in the RHS of the full Adam update step seen in
(24), with the rectification term rt given by,

rt =

√
(ρt − 4)(ρt − 2)ρ∞
(ρ∞ − 4)(ρ∞ − 2)ρt

The behaviour of RAdam as seen in figure 5c displays the variance reduction mechanism
at work. The high learning rates in both functions illustrate a much more uniform con-
vergence without any significant stochastic behaviour. In the case of the Beale function
this proves somewhat detrimental as it results in convergence towards the nearest min-
imum which in this case is a local minimum. The Schubert function however benefits
from RAdam as it guides all descent paths along towards the global minimum. The re-
duced variance at the start means that the algorithm performs a much more controlled
descent, strictly following the geometry of the function surface rather than overshooting
it as was seen with Adam.

4.2.3 AMSGrad

While RAdam looks to improve the performance of Adam in the initial stages of training,
AMSGrad looks to improve the convergence at later stages. The key problem with Adam
comes from its main feature, the decaying average mechanism which endows Adam with
a short-term memory meaning that particularly informative data batches have a short-
lived effect and are soon forgotten in favour of new and often uninformative data. The
only change introduced in AMSGrad modifies the way in which the algorithm computes
the second moment. Instead of computing the unbiased estimate like Adam, AMSGrad
utilises the previously used second moment if it proves larger than the previous unbiased
estimate.

v̂θ
t+1 = max(v̂θ

t, vtθ)

This allows the algorithm to maintain a memory of previous gradient information which
provided significant updates, accelerating convergence. The effectivity of AMSGrad is
not apparent for simple function such as those shown in figure 5d, where the convergence
of AMSGrad appears identical to that of Adam. This mean that the long-term memory
mechanism, which activates in high variance environments, is not utilised for such simple
functions. The high variance utility of AMSGrad is more likely to become apparent in
more complex environments such as in training neural networks, which will be explored
in later sections.

4.2.4 Yogi

The final adaptive algorithm explored here is Yogi [27], an adaptation of Adam which
in a similar manner to AdaGrad alters the update rule for the second moment term in
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(a) Yogi

(b) SVRG

(c) Lookahead

(d) Ranger

Figure 7: Algorithm convergence plots on the Beale and Schubert test functions, trained
with 4 different learning rates for 100 iterations. The learning rates illustrate the range
which allowed for convergence with values outside of these proving detrimental to the
algorithm.
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Adam. Yogi sees the insertion of an additional term in computing the second moment
for the next iteration (25).

vt+1
θ = vtθ − (1− β2)sign

(
vtθ −∇θL(θt, xi)

)
∇θL(θt, xi) (25)

The addition of this sign operator has a smoothing effect which prevents the rapid
changes in gradient direction in regions of high variance. The effect of Yogi can be seen
in 7a where for the Beale function the algorithm prevents the rapid changes of direction
which saw Adam jump around at high learning rates, it does however result in a zig-zag
motion which is generally inefficient for convergence though ultimately the algorithm is
capable of finding the global minimum. The Schubert function sees a similar effect as
the convergence path of high learning rates appears more curved, however this does not
help in finding the global minimum as all but the smallest rates converge towards the
local minimum.

4.3 Variance Reduction Methods
The next class of GD algorithms looks to actively reduce the variance in each gradient
estimation without a significant increase in the complexity.

4.3.1 Stochastic Variance Reduced Gradient

The stochastic sampling of GD data points introduces a bias into the gradient estimation,
with the bias of a data batch {xi, yi} given by (26).

bias = E
[
∇θL(f(θ, xi), yi)

]
−∇θL(f(θ, x), y) (26)

SVRG [28] aims to reduce this bias through an outer and inner loop, utilising a snapshot
of the model’s parameters. At each outer step, SVRG computes a large batch gradient
using {xb, yb} to obtain an accurate gradient estimation. It then proceeds into the inner
loop where it stochastically samples individual data points xi and uses these to estimate
the bias which is then rectified in the final update g̃j (27).

g̃j = ∇Lθ(θ̃j , xi)−
(
∇θL(θt, xi)−∇θL(θt, xb)

)
(27)

The RHS of the outer loop attempts to subtract the estimated bias at each iteration.
This is only an estimate of the bias, computed according to the batch sampled in the
outer loop, hence the estimate can be improved by using a larger batch. However, a
larger batch increases the complexity which must be carefully monitored so as to not
exceed that of simply computing the full gradient. Following this estimate, the inner
weights θ̃ are updated using the standard GD update rule,

θ̃j+1 = θ̃j − αg̃j

Finally, the outer parameters are set by the inner loop parameters in the final iteration.
In this way, SVRG attempt to emulate a full-batch GD update with lower complexity.

While SVRG achieves excellent theoretical results, naive application to deep-learning
problems display the shortcomings of SVRG in the modern scope of ML. Modern prac-
tices in ML such as data augmentation, batch normalisation [29] and dropout [30] prove
problematic for SVRG as they result in the inner loop snapshot being different at each
outer iteration. It has been shown [31] that these result in the variance reduction of
SVRG being negligible, questioning its applicability to many modern architectures.
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The behaviour of SVRG is well illustrated in figure 7b, where the algorithm requires
extremely small learning rates for convergence as it displays erratic and divergent be-
haviour at rates above those shown. In the case of the Beale function, the algorithm
appears to favour a more gradual decline which in this case results with all learning rates
converging towards the global minimum. However, as seen from the Schubert function,
the algorithm will still fall into steep valleys given sufficient curvature. This may suggest
that SVRG is prone to convergence towards sharp minima which would prove to be an
unfavourable trait.

4.3.2 Lookahead

Lookahead [32] utilises an inner loop and two sets of weights in a similar manner to
SVRG. However, it uses its inner loop as an exploration tool rather than attempting
to explicitly compute a variance reduction. The algorithm utilises a set of ’slow’ φ and
’fast’ θ weights, allowing for the attachment of any GD algorithm which it then uses
to update the fast weights inside an inner loop according to the update rule of that
algorithm. In the original implementation, Lookahead used Adam as the base algorithm
which performed the inner loop exploration. After a sufficient number of inner iterations
j, Lookahead performs an update to the slow weights by linearly interpolating between
them and the fast weights (28).

φt+1 = φt + α(θj − φt−1) (28)

This update rule allows the algorithm to explore local features using the fast weights,
meanwhile the slow weights maintain an anchor to prevent the algorithm becoming stuck
in potentially unfavourable minima.

From figure 7c the exploratory mechanism of Lookahead can be seen at work. The
Beale plot shows that unlike the convergence of Adam which involved wildly curving
loops, Lookahead proceeds in straight lines, leading directly to the next point along the
optimisation path instead of following the curvature which is instead explored implicitly
by the fast weights. This behaviour is also replicated in the Schubert plot. However, in
both cases the descent path appears shorter, travelling a shorter distance in 100 itera-
tions than the other algorithms with similar learning rates. This is caused by the inner
loop of the algorithm, which sees the ’slow’ weights updated every 5 iterations hence the
algorithm only sees 20 parameter updates for 100 iterations. This effect is largely offset
by the highly optimal descent direction however it remains noticeable in both plots.

4.3.3 Ranger

The final variance reduction algorithm of interest is Ranger [33]. Ranger builds upon
Lookahead, combining it with RAdam and a gradient centralisation method to maximise
performance. The primary modification in Ranger involves the inclusion of Gradient
Centralisation (GC) [33] which centralises the gradients to have zero mean. Much like
how batch normalisation acts on the activation outputs within a network, gradient
centralisation acts on the computed gradient at each iteration. The method amounts to
an operator φGC (4.3.3) which centralises the gradient.

φGC
(
∇θL(f(θ, x), y)

)
= ∇θL(f(θ, x), y)− µ∇

The GC operator has a regularisation effect in the parameter space, projecting the pro-
posed gradient step onto a hyperplane resulting in a prediction which proves more robust
to overfitting. Furthermore, the behaviour of gradient norms is similar to that observed
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in batch normalisation which sees a reduction in the Lipschitz constant of the loss func-
tion [34] consequently smoothing the loss landscape and improving generalisation. The
combination of the GC operator with Lookahead and RAdam proves particularly useful,
and hence is proposed as a standalone optimiser.

Ranger displays robustness across different learning rates, as seen in figure 7d, where
all rates converge towards the same minimum. In the case of the Beale function, this
behaviour is desirable as all plots converge towards the global minimum, with the largest
learning rate slightly overshooting it. The Schubert function displays convergence to-
wards the nearest minimum, which in this case is local, with the algorithm taking a
much more direct line of descent when compared to the descent of Lookahead. The al-
gorithm also requires lower learning rates for convergence than those seen in Lookahead,
behaving more like SVRG.

4.4 Second-Order Methods
Both second-order (SO) and natural-gradient (NG) methods are a form of precondi-
tioned GD, utilising a matrix of local curvature information to condition the computed
gradient in an attempt to yield a more optimal descent direction. SO methods receive a
brief overlook as they are sparsely mentioned in modern optimisation literature, owing
largely to their significant computational overhead which prohibits applicability. SO
methods look to use the Hessian matrix of second order derivatives to precondition the
gradient term used in the update.

Computing the optimal direction with access to second-order derivative involves formu-
lating the objective function as a second-order Taylor expansion and then minimising
it.

L(θ) = L(θ + d) +∇θL(θ)T d+
1

2
(θ − θ + d)TH(θ − θ + d)

= L(θ + d) +∇θL(θ)T d+
1

2
dTHd

Taking the derivative w.r.t d, setting this to zero and solving.

∇dL(θ) = 0 +∇θL(θ) +Hd

0 = ∇θL(θ) +Hd

Solving for d, the optimal descent direction is obtained by rearranging the above.

d = − 1

H
∇θL(θ) (29)

The descent direction (29) utilises the Hessian matrix H ∈ Rd×d, with d being the
number of parameters in the model. The Hessian size scales quadratically with the
size of the model and soon becomes intractable to compute and invert, invalidating this
method for most models. As a result, many newer SO methods suggest computing the
preconditioner without explicitly computing the Hessian itself, these are referred to as
Hessian-Free (HF) methods. Such HF methods remain relatively complex compared to
first order methods, however they make up for this with more optimal descent steps.
The main limitation of these methods is their use of the Conjugate Gradient, which
requires the curvature matrix to remain fixed [37] while the algorithm iterates. This
means that HF algorithms process data at a much slower rate, causing them to remain
prohibitively slow for large datasets. As will be shown below, Natural Gradient offers
another preconditioning method which is not bound by such limitations.
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4.5 Natural Gradient Methods
The GD methods described above exist entirely within the parameter space from which
they obtain their gradient information and consequently navigate. Natural gradient
(NG) methods shift this approach into the distribution space, where the optimisation
problem aiming to minimise the loss is equivalent to one maximising the likelihood of
the correct prediction by the model. While the Hessian matrix is used to describe the
local curvature in parameter space, NG methods use the Fisher information matrix to
describe the local curvature of the distribution space [35]. The objective function used
in the distribution space is the Kullback–Leibler (KL) divergence (30), which measures
how close two distributions are in a probability space X.

KL(f(θ)||f(θ̃)) =
∑
x∈X

f(θ, x) log
(f(θ, x)
f(θ̃, x)

)
(30)

In this case, the target distribution is the underlying distribution of the data which the
model attempts to learn. The NG descent step is derived similarly to the SO method;
however, it must now contend with the various features of the distribution space in which
NG methods operate. The optimal direction of descent can be derived from the following
minimisation problem, where the KL divergence is fixed to a constant c providing a more
robust formulation which is not affected by reparameterization [36] as it only concerns
itself with the distributions induced by the model parameters.

d∗ = min
d

L(θ + d)

The RHS of the above expression can be written in its Lagrangian form with the con-
strained KL divergence from which the proof proceeds by taking the first and second
order Taylor expansions of L(θ + d) and the KL divergence respectively, with F repre-
senting the Fisher matrix (31). The full derivation of the Taylor expansion is provided
in Appendix B.

d∗ = min
d

L(θ + d) + λ
(
KL

(
f(θ||f(θ + d)

)
− c
)

= min
d

L(θ) +∇L(θ)T d+ 1

2
λdTFd− λc

F = E
[
∇ log

(
f(θ, x)

)
∇ log

(
f(θ, x

)T ] (31)

Taking the derivative w.r.t d, setting to 0 and then solving for d gives the steepest
descent vector.

0 = ∇L(θ) + λFd

d = − 1

λ

∇L(θ)
F

The λ term is dropped as it can be incorporated into the learning rate, leaving the
definition of the natural gradient (32).

∇̃L(θ) = F−1∇L(θ) (32)

The natural gradient (32) is then used to precondition the computed gradient of the
model’s loss function w.r.t the model parameters, with an update step of the form (33).

θt+1 = θt − α∇̃L(θt) (33)
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This naive implementation is intractable for all but the smallest of models, for the same
reasons as was made apparent for SO method above. There do however exist some meth-
ods which aim to efficient approximate and invert the Fisher matrix F , to make the NG
algorithm applicable to larger problems. These methods cannot be effectively visualised
using the test functions mentioned previously as they work within the distribution space,
hence this is omitted for the following algorithms.

4.5.1 Kronecker-factored Approximate Curvature

To allow the application of NG to large scale problems, the algorithm requires an efficient
way of approximating and inverting the Fisher matrix. Kronecker-factored Approximate
Curvature (KFAC) [37] does this by utilising the Kronecker product (34) to provide an
accurate approximation.

A ∈ Rm×n, B ∈ Rp×q : A⊗B ∈ Rmp×nq (34)

The main property of this function is that the inverse of a Kronecker matrix (34) can
be computed by inverting the smaller constituent matrices (35), greatly simplifying the
inversion process. (

A⊗B
)−1

= A−1 ⊗B−1 (35)

Instead of computing the entire Fisher matrix, KFAC aims to directly compute an in-
verted diagonal approximation with a series of blocks corresponding to each network
layer along the matrix diagonal.

Dealing with diagonal blocks, the algorithm computes a Fisher (31) approximation for
each layer of the network. The Fisher matrix can be broken down into a composition
of the gradient of the output of each layer gi and the activation output of the previous
layer ai−1.

∇i log
(
f(θ, x)

)
= gi ⊗ ai−1

Using the properties of the Kronecker product (34), an approximation of the Fisher can
be formulated using these gradients and outputs.

F = E
[
(gi ⊗ ai−1)(gi ⊗ ai−1)T

]
= E

[
(gig

T
i )⊗ (ai−1a

T
i−1)

]
= E

[
gig

T
i

]
⊗ E

[
ai−1a

T
i−1

]
= Gi ⊗Ai−1

From here, the inversion of the Fisher matrix simply requires the inversion of the Gi
and Ai−1 matrices which are much smaller and hence the inversion can be performed
efficiently, with complexity scaling as O(d) rather than O(d2). The approximated Fisher
matrix is then used in preconditioning the gradient information to compute the natural
gradient (32) which finally updates the model parameters (33).

4.5.2 Shampoo

Another method similar to KFAC is Shampoo [38], aptly named as it preconditions the
gradient. Shampoo aims to perform the preconditioning in a piece-wise fashion, where
considering the gradient as a matrix of values, the algorithm computes two statistics
which are then applied to the columns and rows of the gradient matrix. Taking Gt to be
the gradient computed at iteration t, the algorithm then computes Lt and Rt as follows,

Lt = Lt−1 +GtG
T
t
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Rt = Rt−1 +GTt Gt

The parameter update (36) then uses these to precondition the gradient, with α being
the learning rate.

θt+1 = θt − αL−1/4t GtR
−1/4
t (36)

Again, as in KFAC the inversion of the preconditioners can be done effectively as
the algorithm deals with two smaller matrices rather than a single large matrix. The
utilisation of second moment information for the computation of preconditioners Lt and
Rt also sheds some light on the remarkable success of Adam, which similarly uses a
decaying average of second moments of the gradient. This can be thought of as a rough
approximation of the Fisher matrix which endows Adam-like methods with some natural
gradient information allowing them to make a more intelligible decision on its descent
direction.

5 Methodology

5.1 Project Management
This project followed a clear goal from the outset, looking to compare novel optimisation
algorithms against each other, motivated by the lack of such comparisons in modern
ML literature. Beginning with an extensive literature review of the field, the initial
months were largely concerned with learning the theoretical fundamentals in the field
of numerical optimisation which are used in formulating ML optimisation algorithms.
Upon transitioning into the next stage which saw the beginning of test runs, it was
realised that the currently available hardware was insufficient for all but the smallest
of models, requiring a more powerful GPU for the training stage. As a result, the
computational stage of the project was moved into the cloud using Google cloud services
which provided a flexible virtual machine allowing for the modification of the RAM,
GPU, and CPU according to the project requirements. Most of the code was executed
inside a VM utilising a Nvidia Tesla T4 GPU along with 15GB of RAM which proved
sufficient for most algorithms.

5.2 Generalisation Performance
Considering now the techniques used for evaluation, the most fundamental metric of
any optimisation algorithm looks at the performance of the final ML model. In the
case of image classification this is the test accuracy while for the language modelling
task this is the perplexity. Beyond these it is also important to consider the run-
time of the algorithm along with any memory requirements. As these could depend on
machine hardware, they are evaluated relative to each of the other algorithms executed
on the same machine. Most algorithms prove consistent in their run-time and memory
consumption as will be illustrated in the coming sections.

5.3 Loss Surface Visualisation
Beyond the generalisation performance, there exist additional tools with which it is pos-
sible to gain further insights into the training process. The loss surface of deep neural
networks is high dimensional, with the number of dimensions corresponding to the num-
ber of parameters within the model which can reach billions with modern state-of-the-art
architectures. Therefore, it is not possible to visualise the actual loss landscape. There
do however exist techniques for plotting local information about the loss surface, these
have been widely used in ML literature for exploring the surface around the convergence
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Algorithm Gradient Update Term Definitions

Baselines

SGD θt+1 = θt − α∇θL

m̂θ =
β1m

t−1
θ +(1−β1)∇θL

1−β1

Adam θt+1 = θt − α m̂θ√
v̂θ−ε

v̂θ =
β2v

t−1
θ +(1−β2)∇θL

1−β2

β1, β2 ∈ [0, 1)

Adaptive Methods

Low Var: θt+1 = θt − αm̂θ

RAdam rt =
√

(ρt−4)(ρt−2)ρ∞
(ρ∞−4)(ρ∞−2)ρt

High Var: θt+1 = θt − αrtm̂θ√
v̂θ−ε

AMSGrad θt+1 = θt − α m̂θ√
v̂θ−ε

v̂θ = max
(
v̂θ, vt−1

)

Yogi θt+1 = θt − α m̂θ√
v̂θ−ε

v̂θ =
vt−(1−β2)sign

(
vt−∇θL

)
∇θL

1−β2

Variance Reduction

SVRG θt+1 = θt − αg̃t g̃t = ∇θLi − (∇θLi −∇θLx)

Lookahead θt+1 = θt − αg̃ g̃ = θinnert − αθt−1

φGC
(
∇θL

)
= ∇θL− µ∇

Ranger θt+1 = θt − αφGC
(
g̃
)

Low Var: g̃ = m̂θ

High Var: g̃ = rtm̂θ√
v̂θ−ε

Natural Gradient

∇̃θL = F−1∇θL
KFAC θt+1 = θt − α∇̃θL

F = E
[
gig

T
i

]
⊗ E

[
ai−1a

T
i−1
]

Lt = Lt−1 +∇θL(∇θL)T

Shampoo θt+1 − θt − αL−1/4t ∇θLR−1/4t

Rt = Rt−1 + (∇θL)T∇θL

Figure 8: The compilation of gradient update rules for each of the algorithms considered
above.
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point [34, 40, 41, 42]. The primary goal of this method is to investigate the width of
the minima towards which various algorithms converge. With support for the superior
generalisation power of wide and flat minima [4, 5], these can be considered to be the
desirable points of convergence.

5.3.1 1-D Linear Interpolation

Linear interpolation can be used to produce a 1-D plot of the loss function. This is
done by selecting two sets of network parameters, in this case θ∗ are selected to be
the parameters of the converged networks while θ1 is taken to be a random direction
within the parameter space obtained by adding a perturbation to the weights of a newly
initialised model.

L(α̂) = L
(
α̂θ∗ + (1− α̂)θ1

)
(37)

The function (37) then linearly interpolates, using α̂, between the two sets of parameters.
Care should be taken in interpreting these results as they provide a dimensionality-
reduced picture of the local surface and may overlook the significant non-convexities
inherent in high-dimensional parameter spaces.

5.3.2 2-D Contour Plots

This idea can be extended to two dimensions, taking two separate random directions
θ1, θ2 within the parameter space, produced using the perturbation described above,
with θ∗ being the parameters of the converged model. These can then be interpolated
to produce a 2-D plot which provides more information.

L(α̂, β̂) = L
(
θ∗ + α̂θ1 + β̂θ2

)
(38)

This method allows for a more detailed view of the local loss surrounding the convergence
point, illustrating the type of minima towards which different optimisers converge. A
wider minimum of low loss indicates that the model is robust to small changes in its
parameters which could suggest better generalisation.

5.4 Second-Order Information
While the view afforded by visualisation methods involves significant dimensionality-
reduction, second-order information such as the Hessian matrix allow a more direct look
at the properties of the local curvature. Computing the entire Hessian is not feasible for
most models, instead its eigenvalues can provide extensive information about the loss
surface.

Firstly, looking directly at the eigenvalues themselves allows for the sharpness of the
local loss surface to be deduced, as low (|λ| ∼ 0) eigenvalues signify a flat surface lack-
ing curvature meanwhile large (|λ| > 100) values are indicative of steep (positive or
negative) curvature. Looking at individual eigenvalues provides limited information as
these correspond to individual dimensions within the parameter space which may not be
representative of the the remaining dimensions. Instead, the coming sections will look at
the eigenvalue density obtained by computing 200 randomly sampled eigenvalues from
the spectrum to obtain a good snapshot of the magnitudes looking keenly for any out-
liers. These are computed using the Stochastic Lanczos Quadrature algorithm, used
in numerous studies concerning the loss surface of various neural network architectures
[55, 56, 57].
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5.5 Code
To facilitate the comparison across different algorithms, the project required a code base
which could perform repeated training runs on different models, iterating over hyperpa-
rameter settings. In line with most ML research today, this was written in Python due
to its wide range of data handling and ML libraries. The library of choice was PyTorch
[58], with its widespread use in ML it allows for the implementation of custom optimiser
classes which proved beneficial.

The training runs were executed on a Google Cloud virtual machine, utilising a Nvidia
Tesla T4 GPU with 16 GB of GPU memory. The main memory requirement during
training stems from the backward pass of the backpropagation algorithm which com-
putes the gradient of each layer within the network, 16GB proved sufficient for all the
models. The use of a virtual machine allowed the hardware to be scaled up where
needed. This was only needed in the case of SVRG which required 30GB of RAM as
it maintained several versions of the network parameters. The remaining algorithms all
utilised less than 15GB RAM for all their runs.

6 Empirical Analysis

6.1 Image Classification
This section begins with the image classification task which looks at classifying 60,000
images from the CIFAR100 dataset to any of its 100 classes, providing a sufficiently
difficult task to effectively test each GD optimiser. Below are presented the in-depth
results for the ResNet18 architecture while the following section presents a more high-
level overview of the other architectures including EfficientNet(B0), InceptionV3 and
VGG11. Prior to the training run, each data batch underwent a standard data aug-
mentation procedure involving a randomized crop followed by a random horizontal flip
of the image. Methods such as these are widely used in computer visions problems to
improve model performance.

6.1.1 ResNet18

The ResNet [18] architecture has proven to be very effective in computer vision problems,
introducing skip connections which reuse activations from previous layers in an attempt
to reduce model complexity and overfitting. There exist numerous ResNet architectures
of varying depth, this study focuses on ResNet18, possessing 11.7 million parameters it
ranks as one of the smaller architectures however, regardless of this it proves capable of
obtaining a remarkably good test performance of over 70% after its 40 epoch run. This
section now looks more closely at each algorithm in turn.

Looking at the performance of SGD, the algorithm performs best at higher learning
rates with its optimal accuracy being 59.20%. As illustrated by the contour plots in
figure 9, these converge towards wider and flatter minima which are expected to gener-
alise better. The spectrum of eigenvalues provides a further probe into the geometry of
the loss surface with flat regions producing low eigenvalues centred around zero, while
sharp regions around the minimum result in large and positive eigenvalues. This can be
seen in figure 9 where the learning rate of 0.01 which generalises poorly also produces
large outlying eigenvalues within its spectrum, indicating sharp curvature.

Adam finds itself within a region surrounded by walls of extremely high loss, limit-
ing the visualisation ability of contour plots as the resolution suffers. To better visualise
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Figure 9: SGD (Top-Left) Training loss convergence plot over 40 training epochs.
(Top-Right) Contour plot bounding the loss region within the range [0, 0.1] over differ-
ent learning rates. (Left-Column) Contour loss-surface plots over region surrounding
the point of convergence. (Right-Column) Spectral density of 200 sampled eigenvalues
within the Hessian of the converged model at each learning rate.
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the surface geometry at low loss, the plots in figure 10 only indicate the region within
the loss range of [0, 10], with any white region existing at a greater loss. The behaviour
of Adam appears contrary to that of SGD, performing better at low learning rates and
generalising poorly at higher rates. Ultimately, Adam achieves a superior test accuracy
of 69.12% with a learning rate of 0.001, outperforming SGD by 10%, a significant margin
which illustrates the utility of adaptive methods. Interestingly, while the minimum of
the poorly performing learning rate appears markedly sharper according to the spec-
trum of eigenvalues, the optimal minimum appears sharper than that of the middle rate.
This is illustrated in both the contour plots and the eigenvalue spectrum, which could
indicate the tenuity of the connection between minimum sharpness and model general-
isation, instead indicating that there exists a sufficient width beyond which minima do
not benefit from further flatness.

RAdam puts on a superior performance, obtaining a test accuracy of 71.68% which
ranks higher than both SGD and Adam. From the plots in figure 11 both sets of learn-
ing rates are seen to converge at a similar speed, although they appear to converge
towards different features within the loss landscape. The lower learning rate converges
towards a flatter region as indicated by the contour plot and the low eigenvalues within
the density plot, meanwhile the higher learning rate of 0.0001 converges towards a point
possessing extremely large eigenvalues of more than 2000. This indicates extremely
sharp curvature along individual dimensions within the model’s parameter space which
prove detrimental to the model’s performance.

Yogi performs similarly to RAdam, with the optimal learning rate around 0.001 and
a test accuracy of 71.05%. The contour plots in figure 12 display the robustness of the
middle learning rate to perturbations within the parameter space. Furthermore, the loss
contour of the optimal learning rate appears wider than that of the other rates, corre-
sponding to the best generalisation performance for the model. Compared to Adam,
Yogi much like RAdam appears more robust to changes in its hyperparameters such as
the learning rate. The spectral eigenvalue density displays increasingly large outlying
eigenvalues for smaller learning rates, these however are few, corresponding to a small
number of dimensions which see sharp curvature and the algorithm is still capable of
good generalisation, outperforming the best of SGD which converged towards much flat-
ter regions of the loss surface.

The last of the adaptive algorithms is AMSGrad which appears to perform worse
than the other adaptive algorithms. Its optimal accuracy of 68.98% is the lowest, with
performance close to that of unmodified Adam. It does however display greater robust-
ness to the learning rate, with similar performance for all rates. Its Hessian plots in
figure 13 appear contrary to the contour plots above them, indicating a disparity be-
tween the two which could stem from the limitation of the contour plots being a 2D
projection from a much higher dimensional parameter space.

Each of the three adaptive algorithms does well to illustrate their ability to adapt the
different learning rates to improve model performance, obtaining consistently high accu-
racies across the different rates relative to the fluctuations in accuracy seen for SGD and
Adam. In the case of SGD this is due to the lower rates stalling the training process and
preventing any further progress while in Adam it’s the larger rates which amplify vari-
ance proving particularly detrimental in the early stages where it can hinder convergence.

Moving onto the variance reduction methods, SVRG performs worse than SGD ob-
taining an accuracy of 57.59%, with the eigenvalue plots in figure 14 possessing large
eigenvalues of around 2000 indicating significant sharpness in the curvature surrounding
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Figure 10: Adam (Top-Left) Training loss convergence plot over 40 training epochs.
(Top-Right) Contour plot bounding the loss region within the range [0, 1.5] over differ-
ent learning rates. (Left-Column) Contour loss-surface plots over region surrounding
the point of convergence. (Right-Column) Spectral density of 200 sampled eigenvalues
within the Hessian of the converged model at each learning rate.
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Figure 11: RAdam (Top-Left) Training loss convergence plot over 40 training epochs.
(Top-Right) Contour plot bounding the loss region within the range [0, 1] over different
learning rates. (Left-Column) Contour loss-surface plots over region surrounding the
point of convergence. (Right-Column) Spectral density of 200 sampled eigenvalues
within the Hessian of the converged model at each learning rate.
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Figure 12: Yogi (Top-Left) Training loss convergence plot over 40 training epochs.
(Top-Right) Contour plot bounding the loss region within the range [0, 1.5] over differ-
ent learning rates. (Left-Column) Contour loss-surface plots over region surrounding
the point of convergence. (Right-Column) Spectral density of 200 sampled eigenvalues
within the Hessian of the converged model at each learning rate.
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Figure 13: AMSGrad (Top-Left) Training loss convergence plot over 40 training
epochs. (Top-Right) Contour plot bounding the loss region within the range [0, 1.5]
over different learning rates. (Left-Column) Contour loss-surface plots over region sur-
rounding the point of convergence. (Right-Column) Spectral density of 200 sampled
eigenvalues within the Hessian of the converged model at each learning rate.
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each of the convergence points. Furthermore, the algorithm proves very costly to run,
utilising a significant amount of memory due to the inner loop which requires the storage
of a snapshot of the model. In the case of ResNet18 with 12 million parameters, SVRG
required 30GB of RAM during its execution, this grew rapidly for larger models such as
InceptionV3 and VGG11 quickly proving intractable.

Lookahead appears to be a more effective variance reduction method, obtaining a
good test accuracy of 70.22%, accompanied by a wide minimum in figure 15, with other
learning rates obtaining narrower minima. Furthermore, the simpler design of Looka-
head does not result in any significant memory consumption compared to base Adam
due to the linear interpolation method which updates the model parameters hence un-
like SVRG, Lookahead scales well to larger models providing consistent improvements
over Adam. The algorithm runs at the same speed as the others, with a 40 epoch run
taking around 4 hours on a Tesla T4 GPU.

The final variance reduction algorithm is Ranger, which obtains a test accuracy of
73.02% with a learning rate of 0.001 converging towards a wide minimum. The smaller
learning rate converges more slowly than the others resulting in a narrow minimum with
some extreme eigenvalues within the Hessian. Remarkably even with these properties
Ranger’s worst result still outperforms SGD and it does so with no computational over-
head, completing its 40 epoch run in around 4 hours like the others. Ranger appears to
converge towards wider minima at the higher rates as seen in figure 16, these correspond
to better generalisation.

As the first of the Natural Gradient methods, KFAC achieves an accuracy of 72.96%
proving very similar to Ranger, furthermore it also displays improved robustness to the
learning rate parameter with the accuracy across different rates being around 70.00%.
This is best illustrated by the consistently low eigenvalues in the spectrum of each learn-
ing rate in figure 17, unlike other algorithms which tend to see spikes in eigenvalues at
different rates. The disparity across the eigenvalue plots in figure 17 suggests that the
learning rates converge towards different minima, where the optimal minimum is able
to generalise well even with some sharpness.

Finally, Shampoo is the worst performing algorithms seen thus far, with an opti-
mal accuracy of 57.03% the algorithm is outperformed by SGD. Surprisingly, as seen
in figure 18, Shampoo is able to converge towards a region of low loss at later epochs,
with the contour plots displaying a wider minimum for the lower learning rates which
achieve better accuracy. However, even these minima result in poor generalisation. The
main downside of Shampoo is its complexity, with the 40 epoch run taking more than
double the time of any of the previously seen algorithms which completed their training
in 4 hours. This is caused by the computation of the inverted pre-conditioner matrices
which is done using Singular Value Decomposition, even with the acceleration afforded
by a GPU this operation proves prohibitively slow.

The results of the ResNet architecture indicate that the relationship between the sharp-
ness of minima and the generalisation performance of the model is not yet clear. In
figure 18, Shampoo appears to converge towards generally flat minima according to its
eigenvalues, however, it ultimately fails to generalise well as indicated by the poor test
accuracy when compared to other algorithms. This is likely due to the region of the loss
surface existing at a higher loss value which consequently results in poor test perfor-
mance regardless of its relative flatness. Given that ResNet18 is a relatively small model,
Shampoo is unlikely to find applications in larger models as it proves prohibitively slow
to run and ultimately its performance proves worse than that of baseline algorithms.
The case is similar for SVRG, with its excessive memory requirement which grows in-
tractable for larger models. As a result, both SVRG and Shampoo are eliminated from
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Figure 14: SVRG (Top-Left) Training loss convergence plot over 40 training epochs.
(Top-Right) Contour plot bounding the loss region within the range [0, 4] over different
learning rates. (Left-Column) Contour loss-surface plots over region surrounding the
point of convergence. (Right-Column) Spectral density of 200 sampled eigenvalues
within the Hessian of the converged model at each learning rate.
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Figure 15: Lookahead (Top-Left) Training loss convergence plot over 40 training
epochs. (Top-Right) Contour plot bounding the loss region within the range [0, 1.5]
over different learning rates. (Left-Column) Contour loss-surface plots over region sur-
rounding the point of convergence. (Right-Column) Spectral density of 200 sampled
eigenvalues within the Hessian of the converged model at each learning rate.
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Figure 16: Ranger (Top-Left) Training loss convergence plot over 40 training epochs.
(Top-Right) Contour plot bounding the loss region within the range [0, 1.5] over differ-
ent learning rates. (Left-Column) Contour loss-surface plots over region surrounding
the point of convergence. (Right-Column) Spectral density of 200 sampled eigenvalues
within the Hessian of the converged model at each learning rate.
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Figure 17: KFAC (Top-Left) Training loss convergence plot over 40 training epochs.
(Top-Right) Contour plot bounding the loss region within the range [0, 1.5] over differ-
ent learning rates. (Left-Column) Contour loss-surface plots over region surrounding
the point of convergence. (Right-Column) Spectral density of 200 sampled eigenvalues
within the Hessian of the converged model at each learning rate.
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Figure 18: Shampoo (Top-Left) Training loss convergence plot over 40 training
epochs. (Top-Right) Contour plot bounding the loss region within the range [0, 1]
over different learning rates. (Left-Column) Contour loss-surface plots over region
surrounding the point of convergence. (Right-Column) Spectral density of 200 sam-
pled eigenvalues within the Hessian of the converged model at each learning rate.
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Test Accuracy (%)
Optimiser ResNet18 EfficientNet B0 InceptionV3 VGG11

SGD 59.20 57.91 58.54 59.71
Adam 69.12 56.56 64.39 58.52
RAdam 71.68 59.29 68.97 68.87
Yogi 71.05 62.64 69.12 68.19

AMSGrad 68.98 61.19 66.84 66.92
Lookahead 70.22 60.22 67.31 64.79
Ranger 73.02 61.68 69.86 68.44
KFAC 72.96 64.23 70.44 69.81

Figure 19: Test accuracies after 40 epochs of training on CIFAR100 for each of the image
classification architectures explored in this project, with each architecture possessing the
following number of parameters, ResNet18: 11.7M, EfficientNet B0: 9.2M, Incep-
tionV3: 27.2M, VGG11: 132.9M

further consideration within this paper, as they are outperformed in all aspects of the
optimisation process by the other algorithms and prove intractable for the training of
larger models.

6.1.2 Other architectures

The other network architectures displayed in figure 19 suggest a similar pattern, with
acceleration algorithms obtaining a superior performance against the baselines. Well
performing algorithms appear to generalise well across different architectures with KFAC
and Ranger performing the best. The disparity across the performance of each model
arises due the architectures themselves, where in the case of EfficientNet the architecture
is smaller than ResNet and is not capable of modelling the dataset as closely leading to
a poorer accuracy. Consequently, on the other side, VGG11 is much larger than ResNet
capable of modelling complex data, however it requires a greater number of epochs
to effectively adjust its parameters meaning that at 40 epochs it achieves a lower test
accuracy than ResNet. This also illustrate the remarkable ability of the skip-connections
within ResNets which provide a complexity reduction mechanism making the network
architecture easier and quicker to train than others.

6.2 Natural Language Processing
The second part of the evaluation sees each algorithm applied to the pre-training stage
of the RoBERTa [43] model which involves it being trained on a language modelling
task, in this case using English. The dataset used is the WikiText-103 dataset, proving
sufficiently long to only require a single epoch to produce a trained model [52]. The
evaluation metric of a language model is its perplexity which tells how effective the
model is at predicting the next words. This section will omit the inclusion of the SVRG
and Shampoo algorithms due to their limitations illustrated in the previous section.

The performance increases of acceleration algorithms prove even more notable in NLP
applications, as seen in figure 21, each algorithm outperforms the base SGD and Adam
by at least 10 perplexity, a considerable margin of improvement. The performance of
SGD is illustrated in figure 20 where it appears to converge towards a relatively flat
region of the loss surface. However, the minimum exists at a higher loss compared to
the others, with the surrounding region possessing a loss magnitude of around 6 while
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other algorithms obtain a loss of around 3. As such, the flatness of the minimum proves
irrelevant in this case as the increased loss leads to the worst test perplexity, with SGD
obtaining 87.81, proving more than double that of Adam.

Similarly to SGD, Adam performs worse than the acceleration algorithms, with the
region surrounding its convergence point at a higher loss than others. This is further
illustrated by the convergence plot in figure 20 where Adam displays poor convergence
ultimately ending at a loss of around 6 resulting in a test perplexity of 40.93 ranking
lower than other acceleration algorithms.

Each of the adaptive algorithms RAdam, Yogi and AMSGrad improve upon Adam
with their test perplexity. Of these, Yogi performs the worst, with a perplexity of 33.11,
its mechanism which aims at reducing the rapid changes in gradient directions proves of
less use than the adaptive mechanisms of RAdam and AMSGrad which obtain a perplex-
ity of 24.96 and 22.65 respectively. This disparity is illustrated in figure 20 where Yogi
converges towards a higher training loss than the others which is also reflected in its con-
tour plot, similarly to SGD this displays a minimum at a higher loss than others. Both
RAdam and AMSGrad converge towards more optimal minima, existing at a lower loss
with the wider minimum achieved by AMSGrad reflected in its improved test perplexity.

The variance reduction methods Lookahead and Ranger illustrate good loss con-
vergence with improvements upon the test perplexity of baseline algorithms obtaining
25.79 and 22.50 respectively. Helped by the utilisation of RAdam, Ranger outperforms
Lookahead as indicated in figure 20 by the region of the loss surface surrounding the
minimum which proves flatter for Ranger. Regardless of this, Lookahead still does well
to provide a significant improvement on Adam with its exploration mechanism.

Finally, KFAC appears to once again be the optimal algorithm, obtaining the best
test perplexity of 19.74 and displaying a wider minimum than others in figure 20. These
results prove similar to those for the image classification task above, suggesting that
well performing algorithms can themselves generalise across different ML tasks. All
algorithms in the NLP case found the optimal learning rates being around 100 times
smaller in magnitude than those used for the image classification task. This is largely
due to the much larger dataset which contains a greater number of data points, as this
initially results in significant variance for individual data batches which can lead to an
erratic descent path for larger learning rates.

Each full epoch training run of the RoBERTa model took around 6 hours, with all
algorithms displaying a very consistent run-time, this proved sufficient for good model
performance as illustrated by figure 21. Due to the increased size of the dataset, the exe-
cution of training required an increased amount of memory with each run utilising under
30GB of RAM all algorithms proved consistent in their memory usage. The repeated
success of KFAC illustrates its ability to generalise not only across different network
architecture but also different datasets and ML tasks. The paradigm of "sharp vs flat"
minima is well illustrated by the plots in figure 20 where best performing algorithms ob-
tain minima with reduced sharpness. The algorithms which perform the worst, such as
SGD and Adam, find regions of the loss surface which would be considered flat however,
these exist at higher loss values than the others and hence still lead to poor performance.

7 Conclusion
As the above sections have illustrated, acceleration algorithms can provide significant
improvements to the model performance over baselines such as SGD, with a notable
difference after only 40 epochs. With most models typically training for around 200
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Figure 20: (Top) Loss-Contour plots for the convergent minima of each algorithm.
(Bottom) The training loss convergence plot of each algorithm, evaluated on the test
set of the WikiText103 dataset.
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Optimiser Test Perplexity
SGD 87.81
Adam 40.93
RAdam 25.96
Yogi 33.11

AMSGrad 22.65
Lookahead 25.79
Ranger 22.50
KFAC 19.74

Figure 21: Final test perplexity of each algorithm on the WikiText103 dataset.

epochs, this indicates that GD algorithms exert a significant influence on the perfor-
mance of the model in these early stages of training. The performance gaps witnessed
at 40 epochs can prove significant as a result of which any newly proposed algorithms
should involve these accelerated methods in their evaluation of performance.

In designing new acceleration algorithms, care should be taken to consider computa-
tional and memory budgets as in cases such as SVRG and Shampoo, while feasible in
theory they can prove inefficient when implemented into modern frameworks. In this
case SVRG saw its memory requirements grow rapidly to facilitate the functionality
of its inner loop while Shampoo saw performance issues owing to its implementation
methods. On the contrary, such complex features can find efficient implementations as
illustrated by Lookahead and KFAC which saw significant improvements utilising and
inner loop and Natural Gradient information respectively and did so in an efficient man-
ner with no major overhead. These well-performing algorithms proved to generalise well
across different tasks and loss functions, performing well in both image classification
and NLP.

Widely discussed in optimisation literature, the paradigm of "Flat vs Sharp" minima
proves more complex than expected. While the general trend across different algorithms
found that wider minima with a reduced number of large Hessian eigenvalues appear to
generalise better, several algorithms reached regions containing eigenvalues of around
100 and still managed to generalise well. While on the contrary, Shampoo converged
towards relatively flat regions of the loss surface when its generalisation performance
proved far worse than that of other algorithms. In general, there appeared to be little
correlation between the properties of the minima and model performance within re-
gions where the eigenvalues were less than 100. Model performance did suffer as the
eigenvalues grew to values larger than this, suggesting that there exists a threshold
within which moderately sharp curvature along individual dimensions does not prove
detrimental. Meanwhile outside of this region, extreme sharpness can lead to a loss of
performance.

There exists a disparity between the performance of different network architectures at
the 40 epoch mark. This stems from the smaller models with less parameters learning
the data distribution quicker, however, they do so with a lower capacity for fitting com-
plex data as illustrated by the lower test accuracies of the EfficientNet architecture in
figure 19. Larger networks are capable of more closely fitting such distributions however
they consequently require a greater number of iterations as at 40 epochs both Inception
and VGG11 achieve a lower test accuracy than the smaller ResNet18. To expand the
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7 CONCLUSION

analysis performed in this project, given additional time and resources it would be desir-
able to explore the performance of these algorithms all the way up to full convergence at
around 200 epochs, monitoring their performance along the training process. Further-
more, their performance could also be investigated when implemented in conjunction
with other ML tasks such as Reinforcement Learning which has seen increased use in
recent years.
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B TAYLOR EXPANSION OF KL DIVERGENCE

A First-Order Convexity
The first-order condition can be derived from the general convexity condition.

f(αy + (1− α)x) ≤ αf(y) + (1− α)f(x)

Proceeding, the goal is to rearrange this to isolate f(y), f(x) and any terms involving
α.

f(x+ α(y − x)) ≤ f(x) + α(f(y)− f(x))

f(x+ α(y − x))− f(x) ≤ α(f(y)− f(x))
f(x+ α(y − x))− f(x)

α
≤ f(y)− f(x)

f(y) ≥ f(x) + f(x+ α(y − x))− f(x)
α

The expression is now beginning to more closely resemble the first-order condition, all
that remains is to deal with the term on the far right side.

g(α) = f(x+ α(y − x))

Putting this back in.

f(y) ≥ f(x) + g(α)− g(0)
α

Taking the limit lim
α→0

would grant the derivative g′(0), however instead define a more
general form from the first order Taylor expansion of g.

g′(t) = (∇f(x+ α(y − x)))T (y − x)

For the case of t = 0,

f(y) ≥ f(x) + g′(0) = f(x) + (∇f(x))T (y − x)

Finally, the first-order condition is obtained.

f(y) ≥ f(x) + (∇f(x))T (y − x)

B Taylor Expansion of KL Divergence
Derivation of the second order Taylor expansion of the KL divergence for two distribu-
tions for functions f(θ) and f(θ + d) with data samples x.

KL
[
pθ,x||pθ+d,x

]
= KL

[
pθ,x||pθ,x

]
+ (∇KL

[
pθ,x||pθ,x

]
)T d+

1

2
dTFd

= KL
[
pθ,x||pθ,x

]
+ E

[
∇ log(pθ,x)

]T
d+

1

2
dTFd

Firstly, note that the KL divergence of the same distribution is zero. Furthermore, the
second term on the RHS can be broken down as follows.

E
[
∇ log(pθ,x)

]
=

∫
∇ log(pθ,x)pθ,x dx

=

∫
∇pθ,x
pθ,x

pθ,x dx

52



B TAYLOR EXPANSION OF KL DIVERGENCE

=

∫
∇pθ,x dx = ∇

∫
pθ,x dx

= ∇1 = 0

Hence, the second term on the RHS also becomes zero, resulting in the second order
Taylor expansion of the KL divergence being,

KL
[
pθ,x||pθ+d,x

]
=

1

2
dTFd
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